天文现象来解答织女星的基本含义,天文学家观测到织女星红外线辐射超量,显示织女星似乎有尘埃组成的拱星盘。这些尘粒可能类似于太阳系的古柏带,是岩屑盘中的天体碰撞产生的结果。
基本含义 针对天体摄影的天体摄影术诞生于1840年,当时约翰·威廉·德雷伯使用银版照相法对月球进行摄影。哈佛大学天文台科学家乔治·菲利普斯·邦德(George Phillips Bond)和约翰·亚当斯·惠普尔(John Adams Whipple)在1840年7月17日对织女星进行摄影,它成为人类第一颗(除了太阳以外)摄影的恒星,也是使用银版照相法。亨利·德雷伯在1872年8月对织女星摄影的时候,得到了第一张恒星光谱的照片。这也使得他成为第一个展现恒星吸收谱线的人。天文学家已经在太阳的光谱里辨识出类似的光谱线。威廉·哈金斯在1879年利用织女星和类似恒星的光谱照片来辨认一系列在该类恒星里普遍存在的12条“非常强烈的谱线”。後来天文学家辨认出这是氢原子的巴耳麦系谱线。从1943年开始,天文学家将织女星的光谱当成分类其他恒星的标准之一。
天文学家可以藉由地球环绕太阳公转时,织女星相对於背景恒星的视差测量出它与地球之间的距离。历史上首先发表恒星视差的人是瓦西里·雅可夫列维奇·斯特鲁维,他宣称的织女星视差值是0.125弧秒(0.125″),但是弗里德里希·威廉·贝塞尔怀疑斯特鲁维发表的数据。当贝塞尔公布恒星系统天鹅座61的视差为0.314″时,斯特鲁维把织女星的视差修正为先前的两倍左右。这次修正使斯特鲁维公布的数据更有疑问,因此当时大部分天文学家(包括斯特鲁维在内)都认可贝塞尔的数据才是历史上首次的视差观测。然而令人吃惊的是,斯特鲁维原本公布的数据与当前天文学家接受的数值0.129″其实非常接近。
地球上看到的恒星亮度是使用标准化的对数刻度-视星等来表示,它随着恒星亮度的增加而减小。肉眼能见的最暗恒星为6等星,而最亮的恒星天狼星星等为-1.47等。为了标准化这个对数刻度,天文学家选择织女星来作为所有波长的0星等。因此许多年以来,织女星被当作是绝对光度测定的亮度刻度。然而这种规定没有延续至今,现在视星等的零点普遍使用特定数值的光流量来表示。这种方法对于天文学家来说更加简便,因为织女星并不能永远作为度量的标准。
UBV测光系统测量通过紫外、蓝和黄色滤光片的恒星星等,并分别使用U、B、V来表示。天文学家在1950年采用六颗恒星来设置UBV测光系统的初始平均值,织女星是其中之一。这六颗恒星的平均星等被定义为:U-B=B-V=0。实际上,这些恒星在黄、蓝和紫外部分的电磁光谱的星等都是一样的。因此织女星在可视的范围内有相对接近的电磁波谱(波长范围为350-850纳米,人眼大部分都能够看见),因此光流量密度大致相等,为2000-4000Jy。然而织女星的光流量密度在红外波段大幅降低,每5平方毫米大约为100Jy。